Поиск по сайту
Авторизация
партнеры
|
Разметка на шаре: «додекаэдр» или «С10»
15.06.2016
Разметка на шаре: «додекаэдр» или «С10»![]() ![]() Так, например, некоторое время назад шили футбольные мячи. Фигуру, изображенную на фоне шара, можно представить, как проекцию ребер и граней правильного многогранника – додекаэдра - на описанную вокруг него сферу. Додекаэдр имеет 20 вершин, 30 ребер, 12 граней. Две причины, побудившие появление нового способа разметки известной под именем С10:
Для разметки на шаре можно действовать по плану: 1) вычислим длину ребра додекаэдра, вписанного в данный шар, используя длину окружности его большого круга; 2) вырежем из бумаги правильный пятиугольник со стороной, равной длине ребра додекаэдра; 3) используем полученный пятиугольник для разметки. Советы и примеры. 1. Как вычислить длину ребра додекаэдра, вписанного в данный шар?
2. Как создать правильный пятиугольник, сторона которого равна ребру додекаэдра? Правильный пятиугольник может быть построен разными способами с помощью циркуля и линейки. Этот процесс описан еще Евклидом в его «Началах» около 300 года до н. э.
Опыт подсказывает, что на практике удобнее получить правильный пятиугольник, завязав узлом полоску бумаги (или ткани) шириной, равной длине ребра додекаэдра. Понятно, что измерение, вычисление и построение дают некоторую погрешность результата. Но это оказывается «плюсом» для разметки на выпуклой поверхности шара, т.к. ребро сферического многогранника, естественно, длиннее.
3. Как на поверхности шара обозначить 20 вершин вписанного в него додекаэдра?
Обратите внимание на то, что все 20 вершин додекаэдра лежат по пять в четырёх параллельных плоскостях, образуя в каждой из них правильный пятиугольник.
4. Примеры.
Заключение Для разметки достаточно: 1) измерить длину окружности большого круга L данного шара; 2) вычислить длину ребра додекаэдра, вписанного в данный шар, используя приближенное равенство α≈0.11L. 3) вырезать из бумаги (ткани) правильный пятиугольник со стороной примерно равной ; 4) используя пятиугольник, последовательно откладывать на поверхности шара 20 вершин додекаэдра. Автор: Светлана Минаева |
"Первые" темари в альбомах
![]() Я делала эти темари по урокам. Подумала, что вам интересно посмотреть, что получается. Ну вот - что получилось, то получилось. Спасибо большое, за отличные пояснения! ![]() "Вернитесь и повторите!!! Простые дизайны можно делать бесконечно",- совет Виктории Орловой в одной из статей сайта. Все мои шарики - точное следование совету мастера:)) |